
www.manaraa.com

0018-9162/98/$10.00 © 1998 IEEE October 1998 77

Parsec: A Parallel
Simulation
Environment for
Complex Systems

S
ystems are now being designed that can scale
to very large configurations. Examples
include parallel architectures with thousands
of processors, wireless networks connecting
tens of thousands of computers, and paral-

lel database systems capable of processing millions of
transactions a second. In some cases, systems have
grown considerably larger than envisaged by their
designers.

Design and development costs for such systems could
be significantly reduced if only there were efficient tech-
niques for evaluating design alternatives and predicting
their impact on overall system performance metrics.
Due to the systems’ analytical intractability, simulation
is the most common performance evaluation technique
for such systems. However, the long execution times
needed for sequential simulation models often hamper
evaluation. For instance, it can easily take weeks to sim-
ulate wireless networks with thousands of mobile
nodes that are subject to the interference and signal-
fading effects of a realistic environment.

Also, the simulation of parallel programs typically
suffers from slowdown factors of 30 to 50 per proces-
sor.1 This means that simulation of a parallel program
executing for five to 15 minutes on a 128-node multi-
processor can take anywhere from a few weeks to a
few months—even on state-of-the-art sequential work-
stations. As the size of the physical system increases,
the models’ memory requirements can easily exceed
the workstations’ capacity.

The limitations of sequential model execution have
led to growing interest in the use of parallel execution

for simulating large-scale systems. Widespread use of
parallel simulation, however, has been significantly
hindered by a lack of tools for integrating parallel
model execution into the overall framework of sys-
tem simulation. Although a number of algorithmic
alternatives exist for parallel execution of discrete-
event simulation models, performance analysts not
expert in parallel simulation have relatively few tools
giving them flexibility to experiment with multiple
algorithmic or architectural alternatives for model
execution.

Another drawback to widespread use of simulations
is the cost of model design and maintenance. The
design and development costs for detailed simulation
models for complex systems can easily rival the costs
for the physical systems themselves.

The simulation environment we developed at UCLA
attempts to address some of these issues by providing
these features:

• An easy path for the migration of simulation
models to operational software prototypes.

• Implementation on both distributed- and shared-
memory platforms and support for a diverse set
of parallel simulation protocols.

• Support for visual and hierarchical model design.

Our environment consists of three primary compo-
nents: a parallel simulation language called Parsec
(parallel simulation environment for complex sys-
tems); its GUI, called Pave; and the portable runtime
system that implements the simulation algorithms.

When parallel architectures, parallel databases, and wireless networks
are scaled to larger configurations, sequential simulations become
computationally intractable. UCLA researchers have addressed this
problem with a simulation environment that supports a diverse set of
algorithms and architectures and provides a visual programming interface.

Rajive
Bagrodia
Richard
Meyer
Mineo Takai
Yu-an Chen
Xiang Zeng
Jay Martin
Ha Yoon
Song
UCLA

Re
se

ar
ch

 F
ea

tu
re

.

www.manaraa.com

78 Computer

Parsec is based on the Maisie simulation lan-
guage, with these significant modifications:

• It uses simpler syntax.
• It uses modified language, to facilitate porting

code from the simulation model to the oper-
ational software.

• It has a robust and extensible runtime kernel
that is considerably more efficient than its pre-
decessor.

• It uses new protocols to predict parallel per-
formance.

PARALLEL SIMULATION PROTOCOLS
A simulation consists of a series of events,

which must be executed in the order of their
time stamps. On a single processor, these events

can be placed in a central queue so that the global
event list algorithm can correctly order them. When
run in parallel, however, not only is the event list dis-
tributed so that each processor has only a portion of
it, but events may also arrive asynchronously from
other processors. For parallel discrete event simula-
tion (PDES), then, additional information is required
to ensure that each processor executes events in their
correct order. Three primary types of parallel syn-
chronization protocols have been developed and are
now being studied: conservative,2 optimistic,3 and
mixed4 (which may include submodels executing in
either conservative or optimistic mode).5

Simulation structure
Parallel simulation models are commonly pro-

grammed as collections of logical processes, in which
each LP models one or more physical processes in the
system. Events in the physical system are modeled by
message communication among the corresponding
LPs, and each message carries a time stamp for the
time when the corresponding event occurs in the phys-
ical system (which means that the terms event and
message can be used interchangeably). Each LP has
these variables:4

• Earliest output time (EOT). The EOT is a lower
bound on the time stamp of any future messages
that the LP may send. If EOTs is infinity for some
LP s, the remaining LPs can be executed inde-
pendently of s. A sink process is an example of
such an LP.

• Earliest input time (EIT). The EIT is a lower
bound on the time stamp of any future message
that the LP may receive. The EITs of an LP s is
the earliest time that it may receive a message
from another LP. The EIT of an LP is infinity if no
other LP sends messages to it. A source process is
an example of such an LP.

• Lookahead. The lookahead for an LP is the
future time interval over which the LP can com-
pletely predict the events it will generate. The
lookahead is used to calculate EOT. For instance,
consider a first-in, first-out (FIFO) server that
serves each incoming job for ∆ time units. If the
server is idle at some simulation time t, its look-
ahead is ∆ and its EOT is (t + ∆).

In general, the lookahead (and hence the EIT and
EOT) of an LP depends on the LP’s state, which
changes dynamically during the simulation. The rela-
tive value of these variables determines the degree or
granularity of synchronization that must exist in a
model. If the EOT of an LP is much larger than its cur-
rent simulation time, other LPs in the system are likely
to execute independently for longer time intervals.
Generally, though, an LP can only estimate the time
stamp of future messages, and the EOT represents a
lower bound on this estimate. It is possible (and often
the case) that even though an LP does not send any
messages over a long interval, its EOT is only mar-
ginally ahead of its current simulation time at any
given time in the simulation.

Synchronization
As it is commonly used, a PDES model is either

optimistic (all LPs executed in the optimistic mode) or
conservative (all LPs executed in the conservative
mode).6 A conservative LP cannot tolerate causality
errors—events executing out of time-stamp order—
so it will only process events with time stamps less
than its EIT. There are a number of algorithms that
compute the EIT of each LP in a distributed manner,
and Parsec includes many of them. In general, a
model’s lookahead and communication topology sig-
nificantly impact the performance of conservative
algorithms.

An optimistic LP may process events with time
stamps greater than its EIT, but the underlying syn-
chronization protocol must detect and correct viola-
tions of the causality constraint. The simplest
mechanism for this is an optimistic LP that periodi-
cally saves—or checkpoints—its state. If the LP is then
found to process messages in an incorrect order, it can
be rolled back to an appropriate checkpointed state,
with the events then processed in their correct order.
Also, an optimistic algorithm must periodically com-
pute a lower bound, also called the global virtual time
(GVT), on the time stamp of the earliest global event;
checkpoints time-stamped earlier than GVT can be
reclaimed. Using our model, it is sufficient for an opti-
mistic LP to preserve at least one checkpointed state
with a time stamp smaller than its EIT. (The minimum
of the EIT of all optimistic LPs is a reasonable lower
bound on the GVT of the model.)

Three primary types
of parallel

synchronization
protocols have

been developed and
are now being

studied:
conservative,

optimistic,
and mixed.

.

www.manaraa.com

Given appropriate mechanisms to advance the EIT
and EOT of the conservative or optimistic LP, it is
possible to implement a PDES model composed from
optimistic and conservative submodels.4 In general,
any of the GVT computation algorithms, conserva-
tive algorithms, or even a combination of them can
be used by a PDES to compute the EIT of each LP,
regardless of the execution mode of the individual LP
in the model. The choice of a specific algorithm for a
given scenario is a matter of efficiency rather than cor-
rectness.

In our aggressive null-message-based scheme,
whenever the EOT of an LP, say s, changes, EOTs is
sent using a null message to other LPs; the null mes-
sage may of course be piggybacked on a regular mes-
sage when feasible. On receipt of a null message, an
LP recomputes its EIT and EOT and propagates
changes to other LPs. Given a model with no zero-
delay cycles (where all LPs have a zero lookahead),
such an algorithm will eventually advance the EIT
(and hence the time) of every LP, regardless of whether
it executes in conservative or optimistic mode.4

Hybrid protocols are also useful for the composition
of autonomous simulators, where each simulation
may internally use a conservative, optimistic, or
sequential protocol.

SIMULATION DEVELOPMENT ENVIRONMENT
We developed our simulation environment so that

an analyst could explore the utility of different simu-
lation algorithms and parallel architectures for the
execution of a given model. The environment sup-
ports a number of front ends for programming mod-
els: the C-based Parsec simulation language; a C++
library, called Compose, that can be interfaced with
native C++ code to execute parallel simulations writ-
ten in C++; and Pave. Figure 1 illustrates the
environment, including the supported hardware, com-
munication packages, OSs, synchronization algo-
rithms, and program interfaces.

Parsec
Parsec adopts the process-interaction approach to

discrete-event simulation. A Parsec program consists
of a set of entities and C functions. Each entity is an
LP that models a corresponding physical process; enti-
ties can be created and destroyed dynamically. Events
are modeled by message communications among the
corresponding entities. Each message carries a logical
time stamp matching the time at which the corre-
sponding event occurs in the physical system. An
entity may also schedule for itself a special message,
called a timeout, for a specific time in the future. This
message is often used by an entity to simulate the pas-
sage of time in the physical system, and its handling
has been optimized in the system.

Wireless networking. The following code fragment
is a Parsec entity for simulating part of a wireless net-

October 1998 79

Virtual time synchronization algorithms

Portable multithreaded communication library

MPL PVMMPI Pthreads

Parsec Pave Compose

Null
message
runtime

Conditional
event

runtime

ANP
runtime

Optimistic
runtime

ISP
runtime

Sequential
runtime

Uniprocessor
machine

(NT/Win95/Unix)

Sun Sparc 1000
(Solaris)

Workstation
networkIBM SP

(AIX)

Figure 1. The UCLA
simulation
environment provides
a number of user
interfaces and imple-
ments several
synchronization proto-
cols using a portable
threaded communica-
tion library, making it
available across a
variety of computer
platforms.

.

www.manaraa.com

80 Computer

working protocol. The entity implements the media
access control (MAC) layer, which takes packets from
a network-routing protocol and transmits them with
a radio. The entity may also receive packets from the
radio and forward them up the stack to the network
router.

message ClearedToSend {};
message MACPacket {IP dest; byte
buffer[PACKET_SIZE];};

message NetworkPacket {IP dest;
byte buffer[PACKET_SIZE];};

message RadioPacket {IP dest; byte
buffer[PACKET_SIZE];};

message RequestClearToSend {IP
dest;};

entity MAC_Protocol (IP myIP) {
bool transmitting;
ename radio, network;
message MACPacket macPacket;

while (true) {
receive (NetworkPacket np) when
(!transmitting) {
transmitting = true;
push(np, buffer);
send RequestClearToSend
{np.dest} to radio;

}
or receive (ClearedToSend cts) {
macPacket =
buildPacket(pop(buffer));
send macPacket to radio;
hold (TRANSMISSION_DELAY);
transmitting = false;

}
or receive {RadioPacket rp) {

send rp to network;
}
}
}

First, several message types are defined just like a C
struct code declaration. Then the entity itself is
defined, much like a C function. The body of the entity
consists primarily of a receive statement block, which
has several resume clauses. The first resume clause
accepts a packet from the network routing layer, but the
when clause prevents this message from being accepted
while the entity is transmitting an earlier packet.

When the entity does receive a packet, it instructs
the radio to request a transmission window (Request
ClearToSend), buffers the packet, and changes its state
to “transmitting” until the packet is sent. The packet
must be buffered because the variable np is local to

the resume clause where it is declared. When the entity
receives the clear signal from the radio, it delivers the
packet and uses the hold statement to advance its time
to after the transmission. The MAC layer may also
receive the radio packets, which it forwards to the net-
work routing layer. Notice that there are two forms
of the send statement: one which uses the message type
and a parameter list and a simpler one that just sends
a message variable.

Facilitate migration. One of Parsec’s major design
goals is to facilitate the migration of simulation mod-
els into operational software. Parsec is built around a
thread-based message-passing programming kernel
called MPC (message-passing C), which can be used to
develop general-purpose parallel programs. The only
difference between Parsec and MPC is that a Parsec
model executes in logical time, with all messages in the
system being processed in the global order of their time
stamps.

In contrast, each entity in an MPC program can
autonomously process messages in the physical order
of their arrival. Because of the common set of mes-
sage-passing primitives used by both environments, it
is relatively easy to transform a Parsec simulation
model into operational parallel software in MPC. This
has been done in the domain of network protocols, in
which simulation models of wireless protocols were
directly refined and incorporated into the protocol
stack of a network operating system for PCs.7 For par-
allel execution, the model is refined by first partition-
ing entities among available processors and then
providing algorithm-specific information to improve
parallel performance. For conservative protocols, this
might imply adding code to compute the application-
specific lookahead for an entity and providing
dynamic connectivity information that restricts the
transmission of updated EOT values of an entity to a
subset of LPs in the model.

Similarly, for optimistic algorithms, the analyst may
modify the default checkpointing or garbage-collec-
tion frequency. When sequential performance proves
inadequate, parallel models are typically derived as
refinements of equivalent sequential Parsec models.
The models’ performance can always be compared
with the consistent sequential version to measure the
benefit of parallel execution. (Of course, for suffi-
ciently large configurations, resource constraints may
preclude sequential execution.)

Visual model design
The Parsec Visual Environment (Pave) facilitates the

visual design of related simulation component libraries,
the construction of simulation models from these com-
ponents in a simple visual framework, the generation
of Parsec code for the models, and the optimization of
the models for parallel execution. Component libraries

.

www.manaraa.com

can be created for domains such as queuing networks
or mobile network infrastructures. Unlike most exist-
ing visual simulation tools, Pave was designed specif-
ically to support parallel simulations.

Pave allows library design of related simulation
components as well as the composition of these com-
ponents into specific simulation models. Every level
of model design has visualization, and features sup-
port both modular design and parallel execution, both
of which permit scalability. Modular design allows
structures to be constructed in ever larger increments,
and parallelism allows their efficient execution.

Graphical programming. Using an enhanced flowchart
description language, entities can be programmed
graphically using common flowchart notation for
sequential control flow and additional notations to
specify message operations (sends and receives).
Alternatively, existing hand-coded entity code can be
included with only minor modifications.

A set of connected entities (for example, a subcircuit
or a network node) may be grouped together as a mod-
ule, which may be replicated or nested in higher level
modules. This permits a hierarchy of models with an
arbitrary level of nesting and arbitrary mixing of mod-
ules and entities at different levels. This hierarchical
modeling capability supports parallelism and scalabil-
ity by allowing models to be designed in large chunks.

Figure 2 shows a modular simulation developed in
Pave that consists of various queuing servers and a
traffic generator (“source0”). The figure shows the
building of a simulation model from a collection of
queuing entities and subnet modules. The smaller win-
dow shows the internal structure of the subnet mod-
ule, which consists of a collection of queuing entities
and a traffic generator. The entities are connected with
simple mouse clicks.

Pave can be used to develop any Parsec model, and
it can be tuned to particular domains through a set of
appropriate parameterized objects. In the networking
domain, for example, a set of library objects can be

constructed to represent traffic generators, routers,
routing protocols, and different types of hardware
(such as radio transmitters).

Partitioning algorithms. For parallel execution, the
model must be effectively partitioned onto the set of
available processors to balance computation load and
minimize message traffic between processors. We are
developing for Pave a set of partitioning algorithms,
including both user-assisted and totally automatic vari-
eties. Pave’s hierarchical design feature allows models
to be designed in tightly coupled chunks, which in turn
provide the system with useful information for divid-
ing the problem among available processors.

For example, in Figure 2 the subnet module is a
tightly coupled subset of the simulation having pri-
marily local communication. Dividing the entities of
the subnet module onto multiple processors would
lead to a great deal of interprocessor communication.
A partitioning algorithm being tested with Pave takes
into account the logical relationship of the LPs within
a module. Further, users will be allowed to specify a
binding factor for each type of module—information
which the designer may know a priori.

To enhance the overall simulator performance, each
synchronization protocol may require additional
information for each entity. For instance, the null-mes-
sage-based synchronization scheme outlined earlier
requires communication topology information to con-
struct the source and destination sets for each entity.
Minimizing these sets reduces synchronization over-
heads and leads to more efficient execution. This
topology information is automatically generated by
Pave. Protocol-specific parameters that are specified
textually in the model—like lookahead and state-
saving frequency—may also be specified through the
visual interface.

Runtime system
A portable kernel executes Parsec programs on

sequential and parallel architectures. Parallel Parsec

October 1998 81

Figure 2. Modular
simulation
developed in Pave
and queuing network
topology with a
subnet module.

.

www.manaraa.com

82 Computer

programs may be executed in two modes—as
parallel programs or as simulation models.
When executed as parallel programs, the pro-
grammer must explicitly indicate any synchro-
nization among the entities in the program; the
runtime system delivers messages to each entity
in the physical order of their arrival. When pro-
grams are executed as simulation models, every
message has a time stamp derived from a simu-
lation clock, and the program (or model) must
be executed such that all messages are processed
in the global order of their time stamps. (In

some cases, messages may be processed out of time-
stamp order, as long as the result of the execution is
equivalent to that of processing messages in their time-
stamp order.)

Parsec supports the following synchronization algo-
rithms:

• A sequential or global event-list algorithm.
• Three parallel conservative algorithms: a null-

message-based algorithm, a conditional event
algorithm, and a combination of the two (the
accelerated null message (ANM) algorithm).

• An optimistic algorithm based on space-time sim-
ulations.8,9

• The ideal simulation protocol (ISP), based on the
critical path concept, which predicts a realistic
lower bound on the execution time of a given par-
allel model.10

As shown in Figure 1, the kernel provides a unified
simulation runtime system for implementing these syn-
chronization algorithms on a variety of architectures.
When running an experiment, the programmer spec-
ifies the synchronization algorithm as a command-line
option, linking the appropriate library with the run-
time system. A number of factors govern the perfor-
mance of parallel simulation of a given application:

• Application characteristics that determine the
inherent parallelism in the model.

• Partitioning methods used to decompose the
model into multiple partitions.

• Architectural and operating system characteris-
tics, including processor speed, communication
latency, and context-switching costs.

• Overhead of the synchronization protocol, which
is perhaps the most important factor.

Experimental measurements on the execution time
of a given parallel model rarely offer sufficient insight
into the underlying causes of the observed performance.
The ISP algorithm provides a way for the analyst to sep-
arate those overheads due solely to the simulation pro-
tocol from other overheads of parallel execution, thus

allowing the analyst to estimate a realistic lower bound
on the execution time of a parallel simulation program.

The ISP algorithm computes the execution time for a
given model on a given architecture by executing the
model twice. The first run uses the null message protocol
(or, in general, any synchronization protocol) to collect a
complete legal message trace for that model. During the
second run, each entity can use the trace to determine the
order in which incoming messages are to be processed—
without using any synchronization protocol.

Consider the following example: An entity receives
a message m, with time stamp u, when the EIT of the
entity is v and v < u. In general, the entity can process
this message only when its EIT is u or larger. Assuming
that the entity has no other messages that can be
processed, it must remain idle as long as its EIT is less
than u. However, using the message trace, the ISP
“knows” the sequence in which incoming messages are
accepted by the entity, thus allowing it to process the
“next” message in the sequence as soon as it arrives.

In this example, if m is the next message in the
sequence, an entity can process it as soon as it is
received if there is no blocking (or rollback) overhead.
In this manner, the ISP excludes overheads that result
solely from the simulation protocol but includes over-
heads resulting from model partitioning, message
transmission and buffering, and other factors related
to the execution of a parallel program. With the
speedup computed by the ISP algorithm, the analyst
can determine if the observed inefficiencies in the exe-
cution of a parallel simulation model result primarily
from implementation inefficiencies in the simulation
protocol or from the inherent lack of concurrency in
the parallelized model.9

CASE STUDIES
A number of simulation models in diverse domains

have been developed using the Maisie and Parsec sim-
ulation environments: VLSI circuit models, telecom-
munication models, ATM models, wireless network
models, parallel architecture and I/O system models,
and parallel program models. In the two applications
discussed here, results on the effectiveness of parallel
model execution are provided as speedup graphs,
where speedup is defined as

Speedup(N,A) = TS / TP(N,A)

where TS is the time for sequential execution of the model
with the sequential global event list algorithm imple-
mented using a splay tree, and TP(N,A) is the execution
time on N processors using simulation algorithm A.
(Sometimes the one-node conservative implementations
were faster than the global event list algorithm, in which
case we used the faster time to compute speedup.)

The experiments were executed on a 32-node IBM

A number of
simulation models in

diverse domains
have been developed
using the Maisie and

Parsec simulation
environments.

.

www.manaraa.com

SP2 running AIX—each node being an RS/6000
workstation processor with 256 Mbytes of main
memory and 66.7-MHz clock speed—and on a Sparc
1000 running Solaris 2.5.1 with eight SuperSparc
CPUs running at 51 MHz and having 512 Mbytes
total shared main memory.

Switch-level circuit simulation
Circuit simulation is a significant bottleneck in the

design of VLSI circuits, and parallel execution can con-
siderably reduce the simulation time for large circuits.
We have developed Mirsim, a parallel switch-level cir-
cuit simulator that is a Parsec implementation of Irsim,
an existing event-driven simulator incorporating a lin-
ear model of MOS transistors. Using a variety of cir-
cuit-partitioning techniques on the IBM SP2, we used
the Parsec implementation to simulate a number of cir-
cuits with both conservative and optimistic protocols.11

Our benchmarks were a number of circuits ranging
in size from 3,300 to 87,000 transistors. These cir-
cuits were first simulated using both Irsim and the
sequential implementation of Mirsim. Compared to
Irsim, the average slowdown for Mirsim was only 2.6
percent, with a maximum slowdown for any circuit
less than 6 percent. The current set of partitioning
algorithms supported by Mirsim includes an iterative
partitioning algorithm (K-FM) and an acyclic algo-
rithm (K-AFM), which imposes the constraint that
generated partitions do not form cycles. In addition,
a graphical facility allows a designer to manually par-
tition the circuit.

Figure 3 summarizes the results of the simulation
study for the VLSI circuits, showing for each circuit
the best speedup that we obtained using both conser-
vative and optimistic algorithms and the specific par-
titioning algorithm that yielded the corresponding
result. No single synchronization or partitioning algo-

rithm dominated, but acyclic partitions appeared to
yield the best performance. Their performance
improves as they eliminate circular dependencies in
the parallel model, which for conservative algorithms
significantly improves the look-ahead properties of
the entities, resulting in a dramatic reduction in null
messages. For optimistic algorithms, it reduces the
number of rollbacks, although the improvements in
execution time are not as dramatic.

Where acyclic partitions were infeasible, manual
partitioning yielded better performance because the
designer could use structural information from the
circuits to minimize communication and synchro-
nization overheads.

Figure 3 also shows the speedup predicted by the ISP.
In many cases, the performance of the simulator is close
to the lower bound predicted by the ISP, which clearly
indicates that further improvements in performance are
likely to come from better partitioning algorithms or
more efficient IPC implementations than from any
improvements in the synchronization mechanism itself.

Wireless network models
Wireless, multihop, mobile networks are useful for

rapid deployment and dynamic reconfiguration, par-
ticularly in applications like battlefield communica-
tions and search-and-rescue operations.7 Parsec has
also been used to develop a parallel simulation library,
called Glomosim, for simulation of such networks.
The library has three primary design goals:

• Capability for simulating very large networks
with tens of thousands of mobile nodes.

• Provision of a consistent framework for quanti-
tative comparison of alternative protocol imple-
mentations at various layers in the wireless
protocol stack and capability to port protocol

October 1998 83

Figure 3. VLSI circuit
simulation results,
showing the best par-
titioning method for
each synchronization
algorithm over a set
of sample circuits.

A F A A

Square64
(68K)

A F A A

Square
(16K)

A F A A

Filter
(13K)

A F A A

Chip2u
(3K)

M F F A

DDFS
(12K)

F F F M

CDMA
(87K)

MMMM

CODEC
(26K)

4.89

4.18

5.98

4.2

5.58
6

5.07

Sp
ee

d
u

p
7

6

5

4

3

2

1

0

Null-message Condition Combination Optimistic ISP

A: K-AFM algorithm F=K-FM algorithm M=Manual partitioning

.

www.manaraa.com

84 Computer

models into operational implementations.
• Integration of existing protocol implementations

into the simulator.

Glomosim is extensible and composable, having
been adapted from the standard ISO/OSI communi-
cation protocol stack for wireless networks. The stack

has been divided into a set of layers, each with its own
API. Models of protocols at one layer interact with
models at a lower or higher layer only via these APIs.
A number of protocols at several of the stack layers
have been implemented. For example, the library pro-
vides different channel propagation models, from sim-
ple analytical function calls to a computationally
intensive statistical impulse response model. Similarly,
the MAC layer supports the simple CSMA protocol
and the more efficient hidden-terminal collision-
avoidance protocols like MACA. The library is con-
tinually adding new protocol models.

Our performance study of the Glomosim library
simulated a network with up to 3,000 mobile nodes
distributed randomly over an 800 meter × 800 meter
region. Each node simulates a spread-spectrum radio
with a transmission range of 50 meters using the
MACA protocol at the MAC layer and a free-space
model of the communications channel. The message
traffic is generated using a Poisson process with a
mean arrival rate of one packet per second for each
node. Figure 4a shows the speedup obtained by the
simulator using the null message protocol to simulate
the network as the number of communicating nodes
is increased. As expected, the speedup improves
monotonically, with an increase in the network traf-
fic and the number of processors. Figure 4b compares
the speedups obtained by the three different conserv-
ative protocols supported by Parsec.

P erformance prediction of large-scale complex
systems using detailed simulation models is a
computationally intensive task. Lack of appro-

priate tools has hindered the widespread use of this
technology in domains where it otherwise could be

8

7

6

5

4

3

2

1

0

Sp
ee

d
u

p

1 2 4 8 16

1,000
1,600
2,000
3,000

Number of processors

6

5

4

3

2

1

0

Sp
ee

d
u

p

1 2 4 8 16

Null
Conditional
ANM

Number of processors(a) (b)

Nodes Protocol

Figure 4. Simulation of Wireless network performance. (a) Speedup using null message protocol as the number of nodes increases. (b) Speedup obtained
using three conservative protocols.

Parallel and Distributed Simulation
The term distributed simulation was originally used to describe the exe-

cution of a simulation model on multiple processors, presumably because
it was conceived in the context of a network of computers.1 Today, the term
parallel simulation, or sometimes parallel and distributed simulation
(PADS), is used to refer to the execution of a simulation model on multiple
processors, regardless of the specific parallel or distributed hardware plat-
form used.

To add further confusion, the term distributed simulation has also been
used to refer to the interconnection of a number of autonomous simula-
tions, particularly in a military context (for example, distributed interactive
simulations, or DIS). The primary distinction between PADS and DIS is
that PADS requires that all events in the system be executed in their causal
order, where causality is typically determined on the basis of event time
stamps, whereas DIS-like simulations do not require this strict level of syn-
chronization among multiple components and can even tolerate message
loss.2

References
1. K.M. Chandy and J. Misra, “Distributed Simulation: A Case Study in Design

and Verification of Distributed Programs,” IEEE Trans. Software Eng., Sept.
1979, pp. 440-452.

2. R. Fujimoto and R. Weatherly, “Time Management in the DoD High Level
Architecture,” Proc. 1996 Workshop Parallel and Distributed Simulation, IEEE
CS Press, Los Alamitos, Calif., 1996, pp. 60-67.

.

www.manaraa.com

used profitably. Our parallel discrete-event simula-
tion environment supports the design and execution
of parallel models on shared-memory and message-
passing platforms using a variety of synchronization
algorithms. The speedup numbers for our case stud-
ies provide convincing proof of the potential of par-
allel model execution for reducing the execution time
of detailed simulation models of complex systems.

However, a number of important research issues
still need to be addressed. One is finding a design for
partitioning algorithms that not only minimizes the
communication costs among the partitions but also
reduces the overheads of the parallel simulation algo-
rithms. Another challenging task is finding a useful
way to make parallel simulation technology accessible
to the end user through the design of domain-specific
libraries of parallelized models. Solving these prob-
lems will make parallel simulation as accessible to end
users as sequential simulation is today. ❖

Acknowledgment
This work was partially supported by the US

Defense Advanced Research Projects Agency under
contracts J-FBI-93-112, DABT-63-94-C-0080, and
DAAB07-97-C-D321.

References
1. E.A. Brewer et al., Proteus: A High Performance Paral-

lel Architecture Simulator, Tech. Report MIT/LCS/ TR-
516, Massachusetts Institute of Technology, Cambridge,
Mass., 1991.

2. J. Misra, “Distributed Discrete-Event Simulation,” ACM
Computing Surveys, Mar. 1986, pp. 39-65.

3. D. Jefferson, “Virtual Time,” ACM TOPLAS, July 1985,
pp. 404-425.

4. V. Jha and R. Bagrodia, “A Unified Framework for Con-
servative and Optimistic Distributed Simulation,” Proc.
1994 Workshop on Parallel and Distributed Simulation,
Society for Computer Simulation, San Diego, Calif.,
1994, pp. 12-19.

5. R. Bagrodia, “Parallel Languages for Discrete-Event Sim-
ulation Models,” IEEE Computational Science and
Engineering, Apr.-June 1998, pp. 27-38.

6. R. Fujimoto, “Parallel Discrete Event Simulation,”
Comm. ACM, Oct. 1990, pp. 30-53.

7. A. Alwan et al., “Adaptive Mobile Multimedia Net-
works,” IEEE Personal Comm., Apr. 1996, pp. 7-22.

8. K.M. Chandy and R. Sherman, “Space-Time and Simula-
tion,” Proc. Distributed Simulation Conf., Society for
Computer Simulation, San Diego, Calif., 1989, pp. 33-57.

9. R. Bagrodia, K.M. Chandy, and W.T. Liao, “A Unifying
Framework for Distributed Simulation,” ACM Trans. Mod-
eling and Computer Simulations, Oct. 1991, pp. 348-385.

10. R. Bagrodia, V. Jha, and M. Takai, Performance Evalu-

ation of Conservative Algorithms in Parallel Simulation
Languages, Tech. Report CSD 980026, Computer
Science Dept., UCLA, 1998.

11. Y. Chen and R. Bagrodia, “Shared Memory Implemen-
tation of a Parallel Switch-Level Circuit Simulator,”
Proc. 12th Workshop on Parallel and Distributed
Simulations (PADS) 98, IEEE CS Press, Los Alamitos,
Calif., 1998, pp. 134-141.

Rajive Bagrodia is an associate professor of computer
science at UCLA. His research interests include par-
allel simulation, parallel languages and compilers, and
nomadic computing. He received a BTech in electrical
engineering from the Indian Institute of Technology,
Bombay, and a PhD in computer science from the
University of Texas, Austin.

Richard Meyer is a PhD candidate in computer sci-
ence at UCLA. His research interest is parallel simu-
lation. He received a BS in math and computer science
and an MS in computer science, both from UCLA.

Mineo Takai is a post-doctoral scholar at UCLA. His
research interests include synchronous algorithms in
conservative parallel simulation. He received a BS, an
MS, and a PhD, all in electrical engineering and all
from Waseda University in Japan. He is a member of
SCS.

Yu-an Chen recently received a PhD in computer sci-
ence from UCLA. His research interests include par-
allel simulation and VLSI/CAD. He received a BS and
an MS in computer science and information engi-
neering from the National Taiwan University.

Xiang Zeng is an MS candidate in computer science at
UCLA. Her research interest is scalable network sim-
ulation. She received a BE in computer science from
the University of Science and Technology of China.

Jay Martin is a PhD candidate in computer science at
UCLA. He is currently researching parallel simula-
tion of parallel databases. He received a BS in com-
puter science and a BS in math from the University of
California, Irvine, and an MS in computer science
from UCLA.

Ha Yoon Song is a PhD candidate in computer sci-
ence at UCLA. His research interests are system per-
formance evaluation, parallel and distributed
simulation, distributed computing, and VLSI/CAD.
He received a BS and an MS in computer science from
Seoul National University, Korea.

Contact the authors at the Computer Science Depart-
ment, UCLA, Los Angeles, CA 90095-1596.

October 1998 85

.

